
Fast and Robust Distributed Learning
in High Dimension

El-Mahdi El-Mhamdi
EPFL

elmahdi.elmhamdi@epfl.ch

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Sébastien Rouault
EPFL

sebastien.rouault@epfl.ch

Abstract—Could a gradient aggregation rule (GAR) for dis-
tributed machine learning be both robust and fast? This paper
answers by the affirmative through MULTI-BULYAN. Given n
workers, f of which are arbitrary malicious (Byzantine) and
m = n− f are not, we prove that MULTI-BULYAN can ensure a
strong form of Byzantine resilience, as well as an m

n
slowdown,

compared to averaging, the fastest (but non Byzantine resilient)
rule for distributed machine learning. When m ≈ n (almost
all workers are correct), MULTI-BULYAN reaches the speed of
averaging. We also prove that MULTI-BULYAN’s cost in local
computation is O(d) (like averaging), an important feature for
ML where d commonly reaches 109, while robust alternatives
have at least quadratic cost in d.

Our theoretical findings are complemented with an experimen-
tal evaluation which, in addition to supporting the linear O(d)
complexity argument, conveys the fact that MULTI-BULYAN’s
parallelisability further adds to its efficiency.

Index Terms—Distributed Systems, Byzantine Resilience, Ma-
chine Learning, Stochastic Gradient Descent, High Dimension,
Non-Convex Optimization

I. INTRODUCTION

The ongoing data deluge has been both a blessing and
a burden for machine learning system designers. It was a
blessing since machine learning provably performs better with
more training data [21], and a burden since the quantity of
available data is huge. The set of parameters in machine
learning is now in the order of a gigabyte [10], while training
data is several orders of magnitude beyond that [10] and rarely
available in the same location. In short, distributed machine
learning is not an option anymore; it is the only way to deliver
results in a reasonable time for the user.

At the core of the recent success in machine learning lies
Gradient Descent (GD). GD is an algorithm that consists in
the very simple idea of updating a parameter in the opposite
direction of the gradient of a cost function. The parameter
tunes the algorithm being trained, and the cost function
typically represents how bad the actual parameter performs.
Stochastic Gradient Descent (SGD), a lightweight version of
GD, is the workhorse of today’s machine learning. When all
involved machines are reliable, SGD can be easily distributed.
The general recipe is that several machines (called workers)
carry the gradient computation, and a server aggregates the
resulting gradients in order to update the parameter. This

setting is now widely called the parameter-server setting [15]
and is the dominant standard in distributed machine learning.

In the mainstream declination of this parameter-server
setting [1], [10], [15], [17], the gradient aggregation rule
(GAR) consists mostly in averaging the received gradients.
When none of the workers misbehaves (no Byzantine workers)
and the system is synchronous, it can be easily proven that
averaging the gradients is optimal [7]. Indeed, averaging (or
problem-specific variants of it [32]) requires less steps to train
the model by optimizing the use of multiple workers. However,
as was recently shown [6], [8], [27], averaging is brittle to the
most simple form of adversarial behavior, requiring only one
single machine to behave in a malicious manner.

Among the proposed alternatives to averaging, Krum [6],
[11] attracted significant attention and has been used as a
benchmark in most of the body of work on Byzantine-resilient
gradient descent (e.g. [3], [4], [8], [18], [19], [23], [27]–[30]).
Unlike averaging, which incorporates the sum of all proposed
gradients (including the Byzantine ones), Krum selects the
gradient that is the closest to its ≈ n − f neighbors1. This
ensures that the model update is performed using a gradient
from a worker that behaves correctly.

A key feature of Krum is that, unlike other tools from
traditional robust statistics [20], it does not suffer neither from
computability nor from complexity issues. In particular, Krum
can be computed in a linear time in d, the dimension2 of
the model being trained. However, Krum suffers from two
important limitations. (1) By basing its selection on a distance
measurement, Krum suffers from what is known in high-
dimensional machine learning as the curse of dimensionality.
Basically, distances become almost meaningless when the
dimension of the vectors is too large. In particular, because
models are high dimensional, and the landscape where they are
being optimized can be highly non convex, a strong adversary

1More specifically, it is n− f − 2, and the ”−2” comes from the fact that
each correct worker knows that in its neighbors, there are only n−f−1 other
workers guaranteed to be correct, besides itself. For safety reasons, the worker
exclude 1 worker from its n− f − 1 neighbourhood, so that the distance to
the remaining n− f − 2 that are selected is guaranteed to be upper bounded
by another correct worker.

2This parameter can attain values as high as 109 or 1011, thus making any
solution from the usual security and fraud detection toolbox unpractical. The
latter tends to have a quadratic or even super-quadratic cost as they mostly
rely on Principal Component Analysis (PCA) as a key ingredient [24].

can make a Byzantine resilient GAR converge (as it is proven
to do), but to a highly non desirable local minima. Specifically,
the adversary benefits from a margin of

√
d to attack distance-

based Byzantine resilient GARs, and make them converge to
a bad local minima. (2) By selecting only the best behaving
gradient (the closest one to its neighbors), Krum ends up using
only one gradient for the update, and does not benefit from the
variance reduction that comes from leveraging many workers
as in averaging. Potentially, Krum can have a slowdown of
up to 1

n compared to using all gradients, when none are
Byzantine. (This slowdown is computed as the number of
steps it takes averaging to converge, divided by the number
of steps it takes Krum to converge.) Given that f workers
are Byzantine, it is understandable that any Byzantine-resilient
GAR would have some slowdown compared to averaging, as it
keeps supposing that not all n workers are reliable. However,
1
n is still too far from a desirable n�f

n (using all n − f non
Byzantine workers).

We ask the question, whether we could devise a gradient ag-
gregation rule for distributed SGD that is both robust and fast?
We answer by the affirmative through MULTI-BULYAN, which
we prove circumvents the two aforementioned limitations.

MULTI-BULYAN builds on previous work. The intu-
ition behind MULTI-BULYAN (combining MULTI-KRUM and
BULYAN) was sketched in [9] without however any precise
description or analysis. BULYAN [12] was proposed on top
of Krum, and was proved to divide the attackers leeway
by the required 1p

d
that stems from the so called curse of

dimensionality and circumvents the first limitation. For the
second limitation, an experimental variant of Krum, coined
MULTI-KRUM was proposed. This does not only take the
(single) closest gradient to its ≈ n− f neighbors, like Krum
does. MULTI-KRUM goes further and selects the (multiple)
≈ n− f closest gradients to their ≈ n− f closest neighbors.
However, it was not clear whether (a) MULTI-KRUM inherits
the Byzantine resilience merits of Krum while having a better
slowdown of ≈ n�f

n and whether (b) BULYAN can also be
used on top of MULTI-KRUM to produce the same leeway
reduction.

In this paper, we first define two notions of Byzantine
resilience, weak and strong, in order to take into account the
specificity of high dimensional non-convex optimization. We
also explain some of the non-intuitive aspects of the latter, such
as why ”mild” adversarial behavior (noise) can sometimes
accelerate learning. We then prove that MULTI-KRUM is
indeed Byzantine resilient in the same sense as Krum. MULTI-
KRUM guarantees convergence despite f Byzantine workers.
Hence, BULYAN can be used on top of MULTI-KRUM to
guarantee not only convergence, but convergence without the
high-dimensional vulnerability of non-convex landscapes. (We
call the obtained combination MULTI-BULYAN.)

We prove (a) that MULTI-BULYAN ensures strong Byzantine
resilience and (b) that it is ≈ n�2f

n times as fast as the optimal
algorithm (averaging) in the absence of Byzantine workers.

In particular, when f � n, as is the case in many practical
situations [2], this slowdown tends to 1 and MULTI-BULYAN is
as fast as the optimal (but non Byzantine resilient) averaging.

Paper organization. In section II, we present the algorithms
being studied, as well as a toolbox of formal definitions: weak,
strong, and (α, f)–Byzantine resilience. We also present a
necessary context on non-convex optimization, as well as its
interplay with the high dimensionality of machine learning
together with the

√
d leeway it provides to strong attackers. We

then introduce some background on non-convex optimization
and why it changes the requirement for Byzantine resilient
gradient descent. We also formalize our definitions of weak
and strong Byzantine resilience (the latter was only infor-
mally sketched before). In Section III, we give our proofs of
Byzantine resilience and slow down of MULTI-KRUM and in
Section IV our proofs of Byzantine resilience and slow down
of MULTI-BULYAN. In Section V, we evaluate MULTI-KRUM
and MULTI-BULYAN on two practically important metrics,
namely (1) the aggregation time achieved on actual hardware
and (2) the maximum top-1 cross-accuracy reached using a
given GAR. Section VI discusses how our work bridges the
gap between the Byzantine faults threat model of distributed
computing and the data-poisoning threat model of machine
learning while proposing new directions.

Our experimental claims could be reproduced using this
repository: https://github.com/anonconfsubmit/submit-8618.git
with the password 8AS5lds lzecbmi95ash.

II. BACKGROUND

A. Stochastic Gradient Descent

For illustration, but without loss of generality, consider a
learning task that consists in making accurate predictions for
the labels of each data instance ξi using a high dimensional
model (for example, a neural network); we denote the d
parameters of that model by the vector x. Each data instance
has a set of features (image pixels), and a set of labels
(e.g., {cat, person}). We refer to the jth coordinate of a
vector xi with xi;j . The model is trained with the popular
backpropagation algorithm based on SGD. Specifically, SGD
addresses the following optimization problem.

min
x2Rd

Q(x) , E�F (x; ξ) (1)

where ξ is a random variable representing a total of B data
instances and F (x; ξ) is the cost function. The function Q(x)
is smooth but not convex.

SGD computes the gradient (G(x, ξ) , ∇F (x; ξ)) and then
updates the model parameters (x) in a direction opposite to
that of the gradient (descent). The vanilla SGD update rule
given a sequence of learning rates {γk} at any given step3 is
the following:

x(k+1) = x(k) − γk ·G(x(k), ξ)) (2)

3A step denotes an update in the model parameters.

The popularity of SGD stems from its ability to employ
noisy approximations of the actual gradient. In a distributed
setup, SGD employs a mini-batch of b < B training instances
for the gradient computation:

G(x, ξ) =

bX
i=1

G(x, ξi) (3)

The size of the mini-batch (b) induces a trade-off be-
tween the robustness of a given update (noise in the gra-
dient approximation) and the time required to compute this
update. The mini-batch also affects the amount of parallelism
(Equation 3) that modern computing clusters (multi-GPU etc.)
largely benefit from. Scaling the mini-batch size to exploit
additional parallelism requires however a non-trivial selection
of the sequence of learning rates [13]. A very important
assumption for the convergence properties of SGD is that each
gradient is an unbiased estimation of the actual gradient, which
is typically ensured through uniform random sampling, i.e.,
gradients that are on expectation equal to the actual gradient
(Figure II-A).

B. Algorithms

MULTI-BULYAN relies on two algorithmic components:
MULTI-KRUM [6] and BULYAN [12]. The former rule requires
that n ≥ 2f + 3 and the second requires that n ≥ 4f + 3.
MULTI-BULYAN (along with MULTI-KRUM and BULYAN used
as functions) is presented in Algorithm 1.

Intuitively, the goal of MULTI-KRUM is to select the gra-
dients that deviate less from the “majority” based on their
relative distances. Given gradients G1 . . .Gn proposed by
workers 1 to n respectively, MULTI-KRUM selects the m
gradients with the smallest sum of scores (i.e., `2 norm from
the other gradients) as follows:

(m) arg min
i2f1;:::;ng

X
i!j
‖Gi −Gj‖2 (4)

where given a function X(i), (m) arg min(X(i)) denotes the
indexes i with the m smallest X(i) values, and i→ j means
that Gj is among the n − f − 2 closest gradients to Gi.
BULYAN in turn takes the aforementioned m vectors, computes
their coordinate-wise median and produces a gradient which
coordinates are the average of the m − 2f closest values to
the median.

C. Byzantine Resilience

Intuitively, Byzantine resilience requires a GAR to guaran-
tee convergence despite the presence of f Byzantine workers.
It can be formally stated as follows.

Definition 1 (Weak Byzantine resilience). We say that a
GAR ensures weak f -Byzantine resilience if the sequence
x(k) (Equation 2) converges almost surely to some x∗ where
∇Q(x∗) = 0, despite the presence of f Byzantine workers.

Algorithm 1 The Gradient Aggregation Rule (GAR) of
MULTI-BULYAN.
Require: I: Set of all items; U : Set of all users.
Require: n: number of workers, m: minimum MULTI-KRUM size.

Parameter Server:
1: function MULTI-KRUM (f, [G1, ..., Gk]):
2: S = Dict() B Dictionary: (key=gradient, value=score).
3: m = k − f − 2
4: for i ∈ [1, ..., k] do:
5: neighbors = k − f − 2 closest (`2 norm) vectors to Gi

6: S[Gi] =
∑

G∈neighbors ||Gi −G ||2

7: Gwinner = S.getSmallestV alues(1).getKeys()
8: Goutput = Average(S.getSmallestV alues(m).getKeys())
9: return Gwinner, Goutput

10: end function
11:
12: function MULTI-BULYAN (f, [G1, ..., Gn]):
13: θ = n− 2f − 2
14: β = θ − 2f
15: Gext = Array[θ][d] B extracted gradients.
16: Gagr = Array[θ][d] B aggregated gradients.
17: M = Array[d] B coordinate-wise medians.
18: C = Array[β][d]
19: for i ∈ [0, ..., θ] do:
20: Gext[i], Gagr[i] = MULTI-KRUM (f, [G1, ..., Gn] \Gext)
21: M = Median(Gext)
22: for j ∈ [0, ..., d− 1] do:
23: C[:][j] = Argpartition(|Gagr[:][j]−M [j]|, β) B β closest

coordinates to the median.
return Average(Gagr[C])

24: end function
25:
26: function GAR(f, [G1, ..., Gn]):

return MULTI-BULYAN (f, [G1, ..., Gn])
27: end function

On the other hand, strong Byzantine resilience requires that
this convergence does not lead to ”bad” optimums, and is
related to more intricate problem of non-convex optimization,
which, in the presence of Byzantine workers, is highly aggra-
vated by the dimension of the problem as explained in what
follows.

a) Specificity of non-convex optimization.

Non-convex optimization is one of the earliest established
NP-hard problems [14]. In fact, many interesting but hard
questions in machine learning have their source in the non
convexity of the cost function.

In distributed machine learning, the non-convexity of the
cost function creates two non-intuitive behaviours that are
important to highlight.

(1) A ”mild” Byzantine worker can make the system
converge faster. For instance, it has been reported several
times in the literature that noise accelerates learning [7],
[14]. This can be understood from the ”S” (stochasticity) of
SGD: as (correct) workers cannot have a full picture of the
surrounding landscape of the cost function, they can only
draw a sample at random and estimate the best direction
based on that sample, which can be, and is probably biased
compared to the true gradient. Moreover, due to non-convexity,

	Introduction
	Background
	Stochastic Gradient Descent
	Algorithms
	Byzantine Resilience

	multi-Krum: Weak Byzantine Resilience and Slowdown
	multi-Bulyan: Strong Byzantine Resilience and Slowdown
	Experiments
	Setup
	Experimental Results

	Concluding Remarks
	References

