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Abstract—Could a gradient aggregation rule (GAR) for dis-
tributed machine learning be both robust and fast? This paper
answers by the affirmative through MULTI-BULYAN. Given n
workers, f of which are arbitrary malicious (Byzantine) and
m = n− f are not, we prove that MULTI-BULYAN can ensure a
strong form of Byzantine resilience, as well as an m

n
slowdown,

compared to averaging, the fastest (but non Byzantine resilient)
rule for distributed machine learning. When m ≈ n (almost
all workers are correct), MULTI-BULYAN reaches the speed of
averaging. We also prove that MULTI-BULYAN’s cost in local
computation is O(d) (like averaging), an important feature for
ML where d commonly reaches 109, while robust alternatives
have at least quadratic cost in d.

Our theoretical findings are complemented with an experimen-
tal evaluation which, in addition to supporting the linear O(d)
complexity argument, conveys the fact that MULTI-BULYAN’s
parallelisability further adds to its efficiency.

Index Terms—Distributed Systems, Byzantine Resilience, Ma-
chine Learning, Stochastic Gradient Descent, High Dimension,
Non-Convex Optimization

I. INTRODUCTION

The ongoing data deluge has been both a blessing and
a burden for machine learning system designers. It was a
blessing since machine learning provably performs better with
more training data [21], and a burden since the quantity of
available data is huge. The set of parameters in machine
learning is now in the order of a gigabyte [10], while training
data is several orders of magnitude beyond that [10] and rarely
available in the same location. In short, distributed machine
learning is not an option anymore; it is the only way to deliver
results in a reasonable time for the user.

At the core of the recent success in machine learning lies
Gradient Descent (GD). GD is an algorithm that consists in
the very simple idea of updating a parameter in the opposite
direction of the gradient of a cost function. The parameter
tunes the algorithm being trained, and the cost function
typically represents how bad the actual parameter performs.
Stochastic Gradient Descent (SGD), a lightweight version of
GD, is the workhorse of today’s machine learning. When all
involved machines are reliable, SGD can be easily distributed.
The general recipe is that several machines (called workers)
carry the gradient computation, and a server aggregates the
resulting gradients in order to update the parameter. This

setting is now widely called the parameter-server setting [15]
and is the dominant standard in distributed machine learning.

In the mainstream declination of this parameter-server
setting [1], [10], [15], [17], the gradient aggregation rule
(GAR) consists mostly in averaging the received gradients.
When none of the workers misbehaves (no Byzantine workers)
and the system is synchronous, it can be easily proven that
averaging the gradients is optimal [7]. Indeed, averaging (or
problem-specific variants of it [32]) requires less steps to train
the model by optimizing the use of multiple workers. However,
as was recently shown [6], [8], [27], averaging is brittle to the
most simple form of adversarial behavior, requiring only one
single machine to behave in a malicious manner.

Among the proposed alternatives to averaging, Krum [6],
[11] attracted significant attention and has been used as a
benchmark in most of the body of work on Byzantine-resilient
gradient descent (e.g. [3], [4], [8], [18], [19], [23], [27]–[30]).
Unlike averaging, which incorporates the sum of all proposed
gradients (including the Byzantine ones), Krum selects the
gradient that is the closest to its ≈ n − f neighbors1. This
ensures that the model update is performed using a gradient
from a worker that behaves correctly.

A key feature of Krum is that, unlike other tools from
traditional robust statistics [20], it does not suffer neither from
computability nor from complexity issues. In particular, Krum
can be computed in a linear time in d, the dimension2 of
the model being trained. However, Krum suffers from two
important limitations. (1) By basing its selection on a distance
measurement, Krum suffers from what is known in high-
dimensional machine learning as the curse of dimensionality.
Basically, distances become almost meaningless when the
dimension of the vectors is too large. In particular, because
models are high dimensional, and the landscape where they are
being optimized can be highly non convex, a strong adversary

1More specifically, it is n− f − 2, and the ”−2” comes from the fact that
each correct worker knows that in its neighbors, there are only n−f−1 other
workers guaranteed to be correct, besides itself. For safety reasons, the worker
exclude 1 worker from its n− f − 1 neighbourhood, so that the distance to
the remaining n− f − 2 that are selected is guaranteed to be upper bounded
by another correct worker.

2This parameter can attain values as high as 109 or 1011, thus making any
solution from the usual security and fraud detection toolbox unpractical. The
latter tends to have a quadratic or even super-quadratic cost as they mostly
rely on Principal Component Analysis (PCA) as a key ingredient [24].



can make a Byzantine resilient GAR converge (as it is proven
to do), but to a highly non desirable local minima. Specifically,
the adversary benefits from a margin of

√
d to attack distance-

based Byzantine resilient GARs, and make them converge to
a bad local minima. (2) By selecting only the best behaving
gradient (the closest one to its neighbors), Krum ends up using
only one gradient for the update, and does not benefit from the
variance reduction that comes from leveraging many workers
as in averaging. Potentially, Krum can have a slowdown of
up to 1

n compared to using all gradients, when none are
Byzantine. (This slowdown is computed as the number of
steps it takes averaging to converge, divided by the number
of steps it takes Krum to converge.) Given that f workers
are Byzantine, it is understandable that any Byzantine-resilient
GAR would have some slowdown compared to averaging, as it
keeps supposing that not all n workers are reliable. However,
1
n is still too far from a desirable n−f

n (using all n − f non
Byzantine workers).

We ask the question, whether we could devise a gradient ag-
gregation rule for distributed SGD that is both robust and fast?
We answer by the affirmative through MULTI-BULYAN, which
we prove circumvents the two aforementioned limitations.

MULTI-BULYAN builds on previous work. The intu-
ition behind MULTI-BULYAN (combining MULTI-KRUM and
BULYAN) was sketched in [9] without however any precise
description or analysis. BULYAN [12] was proposed on top
of Krum, and was proved to divide the attackers leeway
by the required 1√

d
that stems from the so called curse of

dimensionality and circumvents the first limitation. For the
second limitation, an experimental variant of Krum, coined
MULTI-KRUM was proposed. This does not only take the
(single) closest gradient to its ≈ n− f neighbors, like Krum
does. MULTI-KRUM goes further and selects the (multiple)
≈ n− f closest gradients to their ≈ n− f closest neighbors.
However, it was not clear whether (a) MULTI-KRUM inherits
the Byzantine resilience merits of Krum while having a better
slowdown of ≈ n−f

n and whether (b) BULYAN can also be
used on top of MULTI-KRUM to produce the same leeway
reduction.

In this paper, we first define two notions of Byzantine
resilience, weak and strong, in order to take into account the
specificity of high dimensional non-convex optimization. We
also explain some of the non-intuitive aspects of the latter, such
as why ”mild” adversarial behavior (noise) can sometimes
accelerate learning. We then prove that MULTI-KRUM is
indeed Byzantine resilient in the same sense as Krum. MULTI-
KRUM guarantees convergence despite f Byzantine workers.
Hence, BULYAN can be used on top of MULTI-KRUM to
guarantee not only convergence, but convergence without the
high-dimensional vulnerability of non-convex landscapes. (We
call the obtained combination MULTI-BULYAN.)

We prove (a) that MULTI-BULYAN ensures strong Byzantine
resilience and (b) that it is ≈ n−2f

n times as fast as the optimal
algorithm (averaging) in the absence of Byzantine workers.

In particular, when f � n, as is the case in many practical
situations [2], this slowdown tends to 1 and MULTI-BULYAN is
as fast as the optimal (but non Byzantine resilient) averaging.

Paper organization. In section II, we present the algorithms
being studied, as well as a toolbox of formal definitions: weak,
strong, and (α, f)–Byzantine resilience. We also present a
necessary context on non-convex optimization, as well as its
interplay with the high dimensionality of machine learning
together with the

√
d leeway it provides to strong attackers. We

then introduce some background on non-convex optimization
and why it changes the requirement for Byzantine resilient
gradient descent. We also formalize our definitions of weak
and strong Byzantine resilience (the latter was only infor-
mally sketched before). In Section III, we give our proofs of
Byzantine resilience and slow down of MULTI-KRUM and in
Section IV our proofs of Byzantine resilience and slow down
of MULTI-BULYAN. In Section V, we evaluate MULTI-KRUM
and MULTI-BULYAN on two practically important metrics,
namely (1) the aggregation time achieved on actual hardware
and (2) the maximum top-1 cross-accuracy reached using a
given GAR. Section VI discusses how our work bridges the
gap between the Byzantine faults threat model of distributed
computing and the data-poisoning threat model of machine
learning while proposing new directions.

Our experimental claims could be reproduced using this
repository: https://github.com/anonconfsubmit/submit-8618.git
with the password 8AS5lds lzecbmi95ash.

II. BACKGROUND

A. Stochastic Gradient Descent

For illustration, but without loss of generality, consider a
learning task that consists in making accurate predictions for
the labels of each data instance ξi using a high dimensional
model (for example, a neural network); we denote the d
parameters of that model by the vector x. Each data instance
has a set of features (image pixels), and a set of labels
(e.g., {cat, person}). We refer to the jth coordinate of a
vector xi with xi,j . The model is trained with the popular
backpropagation algorithm based on SGD. Specifically, SGD
addresses the following optimization problem.

min
x∈Rd

Q(x) , EξF (x; ξ) (1)

where ξ is a random variable representing a total of B data
instances and F (x; ξ) is the cost function. The function Q(x)
is smooth but not convex.

SGD computes the gradient (G(x, ξ) , ∇F (x; ξ)) and then
updates the model parameters (x) in a direction opposite to
that of the gradient (descent). The vanilla SGD update rule
given a sequence of learning rates {γk} at any given step3 is
the following:

x(k+1) = x(k) − γk ·G(x(k), ξ)) (2)

3A step denotes an update in the model parameters.



The popularity of SGD stems from its ability to employ
noisy approximations of the actual gradient. In a distributed
setup, SGD employs a mini-batch of b < B training instances
for the gradient computation:

G(x, ξ) =

b∑
i=1

G(x, ξi) (3)

The size of the mini-batch (b) induces a trade-off be-
tween the robustness of a given update (noise in the gra-
dient approximation) and the time required to compute this
update. The mini-batch also affects the amount of parallelism
(Equation 3) that modern computing clusters (multi-GPU etc.)
largely benefit from. Scaling the mini-batch size to exploit
additional parallelism requires however a non-trivial selection
of the sequence of learning rates [13]. A very important
assumption for the convergence properties of SGD is that each
gradient is an unbiased estimation of the actual gradient, which
is typically ensured through uniform random sampling, i.e.,
gradients that are on expectation equal to the actual gradient
(Figure II-A).

B. Algorithms

MULTI-BULYAN relies on two algorithmic components:
MULTI-KRUM [6] and BULYAN [12]. The former rule requires
that n ≥ 2f + 3 and the second requires that n ≥ 4f + 3.
MULTI-BULYAN (along with MULTI-KRUM and BULYAN used
as functions) is presented in Algorithm 1.

Intuitively, the goal of MULTI-KRUM is to select the gra-
dients that deviate less from the “majority” based on their
relative distances. Given gradients G1 . . .Gn proposed by
workers 1 to n respectively, MULTI-KRUM selects the m
gradients with the smallest sum of scores (i.e., `2 norm from
the other gradients) as follows:

(m) arg min
i∈{1,...,n}

∑
i→j
‖Gi −Gj‖2 (4)

where given a function X(i), (m) arg min(X(i)) denotes the
indexes i with the m smallest X(i) values, and i→ j means
that Gj is among the n − f − 2 closest gradients to Gi.
BULYAN in turn takes the aforementioned m vectors, computes
their coordinate-wise median and produces a gradient which
coordinates are the average of the m − 2f closest values to
the median.

C. Byzantine Resilience

Intuitively, Byzantine resilience requires a GAR to guaran-
tee convergence despite the presence of f Byzantine workers.
It can be formally stated as follows.

Definition 1 (Weak Byzantine resilience). We say that a
GAR ensures weak f -Byzantine resilience if the sequence
x(k) (Equation 2) converges almost surely to some x∗ where
∇Q(x∗) = 0, despite the presence of f Byzantine workers.

Algorithm 1 The Gradient Aggregation Rule (GAR) of
MULTI-BULYAN.
Require: I: Set of all items; U : Set of all users.
Require: n: number of workers, m: minimum MULTI-KRUM size.

Parameter Server:
1: function MULTI-KRUM (f, [G1, ..., Gk]):
2: S = Dict() B Dictionary: (key=gradient, value=score).
3: m = k − f − 2
4: for i ∈ [1, ..., k] do:
5: neighbors = k − f − 2 closest (`2 norm) vectors to Gi

6: S[Gi] =
∑

G∈neighbors ||Gi −G ||2

7: Gwinner = S.getSmallestV alues(1).getKeys()
8: Goutput = Average(S.getSmallestV alues(m).getKeys())
9: return Gwinner, Goutput

10: end function
11:
12: function MULTI-BULYAN (f, [G1, ..., Gn]):
13: θ = n− 2f − 2
14: β = θ − 2f
15: Gext = Array[θ][d] B extracted gradients.
16: Gagr = Array[θ][d] B aggregated gradients.
17: M = Array[d] B coordinate-wise medians.
18: C = Array[β][d]
19: for i ∈ [0, ..., θ] do:
20: Gext[i], Gagr[i] = MULTI-KRUM (f, [G1, ..., Gn] \Gext)
21: M = Median(Gext)
22: for j ∈ [0, ..., d− 1] do:
23: C[:][j] = Argpartition(|Gagr[:][j]−M [j]|, β) B β closest

coordinates to the median.
return Average(Gagr[C])

24: end function
25:
26: function GAR(f, [G1, ..., Gn]):

return MULTI-BULYAN (f, [G1, ..., Gn])
27: end function

On the other hand, strong Byzantine resilience requires that
this convergence does not lead to ”bad” optimums, and is
related to more intricate problem of non-convex optimization,
which, in the presence of Byzantine workers, is highly aggra-
vated by the dimension of the problem as explained in what
follows.

a) Specificity of non-convex optimization.

Non-convex optimization is one of the earliest established
NP-hard problems [14]. In fact, many interesting but hard
questions in machine learning have their source in the non
convexity of the cost function.

In distributed machine learning, the non-convexity of the
cost function creates two non-intuitive behaviours that are
important to highlight.

(1) A ”mild” Byzantine worker can make the system
converge faster. For instance, it has been reported several
times in the literature that noise accelerates learning [7],
[14]. This can be understood from the ”S” (stochasticity) of
SGD: as (correct) workers cannot have a full picture of the
surrounding landscape of the cost function, they can only
draw a sample at random and estimate the best direction
based on that sample, which can be, and is probably biased
compared to the true gradient. Moreover, due to non-convexity,



Fig. 1: In a non-convex situation, two correct vectors (black
arrows) are pointing towards the deep optimum located in
area B, both vectors belong to the plane formed by lines L1
and L2. A Byzantine worker (magenta) is taking benefit
from the third dimension, and the non-convex landscape,
to place a vector that is heading towards one of the bad
local optimums of area A. This Byzantine vector is located
in the plane (L1,L3). Due to the variance of the correct
workers on the plane (L1,L2), the Byzantine one has a
budget of about

√
3 times the disagreement of the correct

workers, to put as a deviation towards A, on the line (L3),
while still being selected by a weak Byzantine resilient
GAR, since its projection on the plane (L1,L2) lies exactly
on the line (L1), unlike that of the correct workers. In
very high dimensions, the situation is amplified by

√
d.

even the true gradient might be leading to the local minima
where the parameter server is. By providing a wrong direction
(i.e. not the true gradient, or a correct stochastic estimation),
a Byzantine worker whose resources cannot face the high-
dimensional landscape of the cost function, might end up
providing a direction to get out of that local minima.

(2) Combined with high dimensional issues, non-convexity
explains the need for strong Byzantine resilience. Unlike
the ”mild” Byzantine worker, a strong adversary with more
resources than the workers and the server, can see a larger
picture and provide an attack that requires a stronger require-
ment. Namely, a requirement that would cut the

√
d leeway

offered to an attacker in each dimension. Figure 1 provides an
illustration.

This motivates the following formalization of strong Byzan-
tine resilience.

Definition 2 (Strong Byzantine resilience). We say that a
GAR ensures strong f -Byzantine resilient if it ensures weak
Byzantine resilience and if for every i ∈ [1, d], there exists a
correct gradient G (i.e., computed by a non-Byzantine worker)
s.t. E|GARi −Gi| = O( 1√

d
). The expectation is taken over

the random samples (ξ in Equation 1)and vi denotes the ith

coordinate of a vector v.

b) Weak vs. strong Byzantine resilience.

To attack non-Byzantine resilient GARs such as averaging,
it only takes the computation of an estimate of the gradient,
which can be done in O(n.d) operations per round by a
Byzantine worker. This attack is reasonably cheap: within the
usual cost of the workload of other workers, O(d), and the
server, O(n.d).

To attack weakly Byzantine-resilient GARs however, one
needs to find the ’most legitimate but harmful vector possible’,
i.e one that will (1) be selected by a weakly Byzantine-
resilient GAR, and (2) be misleading convergence (red arrow
in Figure 1). To find this vector, an attacker has to first collect
every correct worker’s vector (before they reach the server),
and solve an optimization problem (by linear regression)
to approximate this harmful but legitimate vector [12]. If
the desired quality of the approximation is ε, the Byzantine
worker would need at least Ω(n.dε ) operation to reach it
with regression. This is a tight lower bound for a regression
problem in d dimensions with n vectors [14]. In practice, if the
required precision is of order 10−9, with 100 workers and a
neural network model of dimension 109, the cost of the attack
becomes quickly prohibitive (≈ 1020 operations to be done in
each step by the attacker).

To summarize, weak Byzantine resilience can be enough
as a practical solution against attackers whose resources are
comparable to the server’s. However, strong Byzantine re-
silience remains the only provable solution against attackers
with significant resources.

For the sake of our theoretical analysis, we recall the
definition of (α, f)–Byzantine resilience [6] (Definition 3).
This definition is a sufficient condition (as proved in [6]
based on [7]) for weak Byzantine resilience.Even-though the
property of (α, f)–Byzantine resilience is a sufficient, but not
a necessary condition for (weak) Byzantine resilience, it has
been so far used as the defacto standard [6], [27] to guarantee
(weak) Byzantine resilience for SGD. We will therefore follow
this standard and require (α, f)–Byzantine resilience from any
GAR that is plugged into MULTI-BULYAN, in particular, we
will require it from MULTI-KRUM. The theoretical analysis
done in [12] guarantees that BULYAN inherits it.

Intuitively, Definition 3 states that the gradient aggregation
rule GAR produces an output vector that lives, on average
(over random samples used by SGD), in the cone of angle
α around the true gradient. We simply call this the ”correct
cone”.

Definition 3 ((α, f)–Byzantine resilience (as in [6])). Let
0 ≤ α < π/2 be any angular value, and any integer
0 ≤ f ≤ n. Let V1, . . . , Vn be any independent identically
distributed random vectors in Rd, Vi ∼ G, with EG = g. Let
B1, . . . , Bf be any random vectors in Rd, possibly dependent



on the Vi’s. An aggregation rule GAR is said to be (α, f)-
Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, vector

GAR = GAR(V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn)

satisfies (i) 〈EGAR, g〉 ≥ (1 − sinα) · ‖g‖2 > 0 4 and (ii)
for r = 2, 3, 4, E ||GAR ||r is bounded above by a linear
combination of terms E ||G ||r1 . . .E ||G ||rn−1 with r1 +
· · ·+ rn−1 = r.

c) Choice of f .

The properties of the existing Byzantine-resilient SGD algo-
rithms all depend on one important parameter, i.e., the number
of potentially Byzantine nodes f . It is important to notice that
f denotes a contract between the designer of the fault-tolerant
solution and the user of the solution (who implements a service
on top of the solution and deploys it in a specific setting). As
long as the number of Byzantine workers is less than f , the
solution is safe. Fixing an optimal value for f is an orthogonal
problem. For example, if daily failures in a data center are
about 1%, f = 0.01.n would be a suggested choice to tune
the algorithm, and suffer from only a 99% slowdown.

The performance (convergence time) of certain existing
Byzantine-resilient SGD algorithms in a non-Byzantine envi-
ronment is independent of the choice of f . These algorithms
do not exploit the full potential of the choice of f . Modern
large-scale systems are versatile and often undergo important
structural changes while providing online services (e.g., addi-
tion or maintenance of certain worker nodes). Intuitively, there
should be a fine granularity between the level of pessimism
(i.e., value of f ) and the performance of the SGD algorithm
in the setting with no Byzantine failures.

III. MULTI-KRUM: WEAK BYZANTINE RESILIENCE AND
SLOWDOWN

Let n be any integer greater than 2, f any integer s.t
f ≤ n−2

2 and m an integer s.t m ≤ n − f − 2. Let
m̃ = n− f − 2.

Before proving the strong Byzantine resilience of MULTI-
BULYAN, we first prove the (α, f)–Byzantine resilience of
MULTI-KRUM (Lemma 1), then prove its almost sure con-
vergence (Lemma 2) based on that, which proves its weak
Byzantine resilience (Theorem 1).

In all what follows, expectations are taken over random
samples used by correct workers to estimate the gradient, i.e
the ”S” (stochasticity) that is inherent to SGD. It is worth
noting that this analysis in expectation is not an average case
analysis from the point of view of Byzantine fault tolerance.
For instance, the Byzantine worker is always assumed to

4Having a scalar product that is lower bounded by this value guarantees
that the GAR of MULTI-KRUM lives in the aformentioned cone.

follow arbitrarily bad policies and the analysis is a worst-case
one.

The Byzantine resilience proof (Lemma 1) relies on the
following observation: given m ≤ n− f − 2, and in particular
m = n− f − 2 5, m-Krum averages m gradients that are all
in the ”correct cone”, and a cone is a convex set, thus stable
by averaging. The resulting vectors therefore also live in that
cone. The angle of the cone will depend on a variable η(n.f)
as in [6], the value of η(n.f) itself depends on m. This is what
enables us to use m vectors as the basis of our MULTI-KRUM,
unlike [6] where a restriction is made on m = 1. In short, the
convexity of a cone allows us to prove lemma 1 almost as
in [6], the same derivation applies this time to the averaged
m vectors instead of the single vector chosen by Krum.

The proof of Lemma 2 (deferred to the appendix) is the
same as the one in [6] which itself draws on the rather classic
analysis of SGD made by L.Bottou [7]. The key concepts
are (1) a global confinement of the sequence of parameter
vectors and (2) a bound on the statistical moments of the
random sequence of estimators built by the GAR of MULTI-
KRUM. As in [6], [7], reasonable assumptions are made on
the cost function Q, those assumption are not restrictive and
are common in practical machine learning.

Theorem 1 (Byzantine resilience and slowdown of MULTI-
-KRUM). Let m be any integer s.t. m ≤ n−f−2. (i) MULTI-
KRUM has weak Byzantine resilience against f failures. (ii)
In the absence of Byzantine workers, MULTI-KRUM has a
slowdown (expressed in ratio with averaging) of m̃

n .

Proof. Proof of (i). To prove (i), we will require Lemma 1
and Lemma 2, then conclude by construction of MULTI-KRUM
as an m-Krum algorithm with m = n− f − 2.

Lemma 1. Let V1, . . . , Vn be any independent and identically
distributed random d-dimensional vectors s.t Vi ∼ G, with
EG = g and E ||G − g ||2 = dσ2. Let B1, . . . , Bf be any f
random vectors, possibly dependent on the Vi’s. If 2f+2 < n
and η(n, f)

√
d · σ < ‖g‖, where

η(n, f) =
def

√
2 (n− f +

f ·m+ f2 · (m+ 1)

m
),

then the GAR function of MULTI-KRUM is (α, f)-Byzantine
resilient where 0 ≤ α < π/2 is defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖
.

Proof. Without loss of generality, we assume that the Byzan-
tine vectors B1, . . . , Bf occupy the last f positions in the
list of arguments of MULTI-KRUM, i.e., MULTI-KRUM =
MULTI-KRUM(V1, . . . , Vn−f , B1, . . . , Bf ).

5The slowdown question is an incentive to take the highest value of m
among those that satisfy Byzantine resilience, in this case m̃.



An index is correct if it refers to a vector among
V1, . . . , Vn−f . An index is Byzantine if it refers to a vector
among B1, . . . , Bf . For each index (correct or Byzantine)
i, we denote by δc(i) (resp. δb(i)) the number of correct
(resp. Byzantine) indices j such that i → j (the notation
we introduced in Section 3 when defining MULTI-KRUM), i.e
the number of workers, among the m neighbors of i that are
correct (resp. Byzantine).

We have δc(i) + δb(i) = m, n − 2f − 2 ≤ δc(i) ≤ m and
δb(i) ≤ f.

We focus first on the condition (i) of (α, f)-Byzantine
resilience. We determine an upper bound on the squared
distance ‖EMULTI-KRUM − g‖2. Note that, for any correct
j, EVj = g.

We denote by i∗ the index of the worst scoring among the
m vectors chosen by the MULTI-KRUM function, i.e one that
ranks with the mth smallest score in Equation 4.

Though we follow the same derivation of [6], one should
keep in mind that the manipulated object now is not the
winner, minimizing Equation 4, but the ”worst (mth) possible
vector to choose” and prove that it also lies in the correct
cone. This allows us to average it with the m − 1 vectors
with smaller scores, and by convexity of a cone, prove that
the resulting MULTI-KRUM vector is also in that cone.

||EMULTI-KRUM − g ||2 ≤ ||E(MULTI-KRUM

− 1

δc(i∗)

∑
i∗→ correct j

Vj) ||2

(Jensen inequality) ≤ E ||MULTI-KRUM

− 1

δc(i∗)

∑
i∗→ correct j

Vj ||2

≤
∑

correct i

E ||Vi

− 1

δc(i)

∑
i→ correct j

Vj ||2I(i∗ = i)

+
∑
byz k

E ||Bk

− 1

δc(k)

∑
k→ correct j

Vj ||2I(i∗ = k)

where I denotes the indicator function6. We examine the case
i∗ = i for some correct index i.

||Vi −
1

δc(i)

∑
i→ correct j

Vj ||2 = || 1

δc(i)

∑
i→ correct j

Vi − Vj ||2

(Jensen inequality) ≤ 1

δc(i)

∑
i→ correct j

||Vi − Vj ||2

E ||Vi −
1

δc(i)

∑
i→ correct j

Vj ||2 ≤
1

δc(i)

∑
i→ correct j

E ||Vi − Vj ||2

6I(P ) equals 1 if the predicate P is true, and 0 otherwise.

≤ 2dσ2.

We now examine the case i∗ = k for some Byzantine index k.
The fact that k minimizes the score implies that for all correct
indices i∑

k→ correct j

||Bk − Vj ||2 +
∑

k→ byz l

||Bk −Bl ||2 ≤∑
i→ correct j

||Vi − Vj ||2 +
∑

i→ byz l

||Vi −Bl ||2.

Then, for all correct indices i

||Bk −
1

δc(k)

∑
k→ correct j

Vj ||2 ≤
1

δc(k)

∑
k→ correct j

||Bk − Vj ||2

≤ 1

δc(k)

∑
i→ correct j

||Vi − Vj ||2

+
1

δc(k)

∑
i→ byz l

||Vi −Bl ||2︸ ︷︷ ︸
D2(i)

.

We focus on the term D2(i). Each correct process i has m
neighbors, and f+1 non-neighbors. Thus there exists a correct
worker ζ(i) which is farther from i than any of the neighbors
of i. In particular, for each Byzantine index l such that i→ l,
||Vi −Bl ||2 ≤ ||Vi − Vζ(i) ||2. Whence

||Bk −
1

δc(k)

∑
k→ correct j

Vj ||2

≤ 1

δc(k)

∑
i→ correct j

||Vi − Vj ||2

+
δb(i)

δc(k)
||Vi − Vζ(i) ||2

taking expectation on both sides:

E ||Bk −
1

δc(k)

∑
k→ correct j

Vj ||2 ≤

1

δc(k)
·(δc(i)·2dσ2+δb(i)(

∑
correct j 6=i

I(ζ(i) = j)E ||Vi−Vj ||2))

≤ (
δc(i)

δc(k)
·+ δb(i)

δc(k)
(m+ 1) )2dσ2

≤ (
m

n− 2f − 2

+
f

n− 2f − 2
· (m+ 1) )2dσ2.

Combining everything we obtain

||EMULTI-KRUM − g ||2 ≤

(n−f)2dσ2 +f · (
m

n− 2f − 2
+

f

n− 2f − 2
· (m+1) )2dσ2

≤ 2 (n− f +
f ·m+ f2 · (m+ 1)

n− 2f − 2
)︸ ︷︷ ︸

η2(n,f)

dσ2.



By assumption, η(n, f)
√
dσ < ‖g‖, i.e., EMULTI-KRUM

belongs to a ball centered at g with radius η(n, f) ·
√
d · σ.

This implies

〈EMULTI-KRUM, g〉 ≥
(‖g‖ − η(n, f) ·

√
d · σ ) · ‖g‖ = (1− sinα) · ‖g‖2.

To sum up, condition (i) of the (α, f)-Byzantine resilience
property holds. We now focus on condition (ii).

E‖MULTI-KRUM‖r =∑
correct i

E ||Vi ||rI(i∗ = i) +
∑
byz k

E ||Bk ||rI(i∗ = k)

≤ (n− f)E ||G ||r +
∑
byz k

E ||Bk ||rI(i∗ = k).

Denoting by C a generic constant, when i∗ = k, we have for
all correct indices i

||Bk −
1

δc(k)

∑
k→correct j

Vj || ≤√√√√ 1

δc(k)

∑
i→ correct j

||Vi − Vj ||2 +
δb(i)

δc(k)
||Vi − Vζ(i) ||2

≤ C· (

√
1

δc(k)
·
∑

i→correct j

||Vi−Vj ||+

√
δb(i)

δc(k)
· ||Vi−Vζ(i) || )

≤ C ·
∑

correct j

||Vj || (triangular inequality).

The second inequality comes from the equivalence of norms
in finite dimension. Now

||Bk || ≤

||Bk −
1

δc(k)

∑
k→correct j

Vj ||+ || 1

δc(k)

∑
k→correct j

Vj ||

≤ C ·
∑

correct j

||Vj ||

||Bk ||r ≤ C ·
∑

r1+···+rn−f=r

||V1 ||r1 · · · ||Vn−f ||rn−f .

Since the Vi’s are independent, we finally obtain that
E ||MULTI-KRUM ||r is bounded above by a linear combi-
nation of terms of the form E ||V1 ||r1 · · ·E ||Vn−f ||rn−f =
E ||G ||r1 · · ·E ||G ||rn−f with r1 + · · · + rn−f = r. This
completes the proof of condition (ii).

Lemma 2. Assume that (i) the cost function Q is three times
differentiable with continuous derivatives, and is non-negative,
Q(x) ≥ 0; (ii) the learning rates satisfy

∑
t γt = ∞ and∑

t γ
2
t <∞; (iii) the gradient estimator satisfies EG(x, ξ) =

∇Q(x) and ∀r ∈ {2, . . . , 4}, E‖G(x, ξ)‖r ≤ Ar + Br‖x‖r
for some constants Ar, Br; (iv) there exists a constant 0 ≤
α < π/2 such that for all x

η(n, f) ·
√
d · σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist
ε > 0 and 0 ≤ β < π/2− α such that

||∇Q(x) || ≥ ε > 0

〈x,∇Q(x)〉
‖x‖ · ‖∇Q(x)‖

≥ cosβ.

Then the sequence of gradients ∇Q(xt) converges almost
surely to zero.

The proof of Lemma 2 is exactly as in [6] and is deferred
to the appendix.

We conclude the proof of (i) by recalling the definition of
MULTI-KRUM, as the instance of m−Krum with m = n−
f − 2.

a) Proof of (ii).

(ii) is a consequence of the fact that m-Krum is the average
of m estimators of the gradient (line 8 in Algorithm 1). In
the absence of Byzantine workers, all those estimators will
not only be from the ”correct cone”, but from correct workers
(Byzantine workers can also be in the correct cone, but in this
case there are none). As SGD converges in O( 1

m ), where m is
the number of used estimators of the gradient, the slowdown
result follows.

IV. MULTI-BULYAN: STRONG BYZANTINE RESILIENCE
AND SLOWDOWN

Let n be any integer greater than 2, f any integer s.t
f ≤ n−3

4 and m an integer s.t m ≤ n − 2f − 2. Let
m̃ = n− 2f − 2.

Theorem 2 (Byzantine resilience and slowdown of MUL-
TI-BULYAN). (i) MULTI-BULYAN provides strong Byzantine
resilience against f failures. (ii) MULTI-BULYAN requires
O(d) local computation. (iii) When no worker is Byzantine,
MULTI-BULYAN has a m̃

n slowdown relative to averaging.

Proof. (i) If the number of iterations over MULTI-KRUM is
n − 2f , then the leeway, defined by the coordinate-wise
distance between the output of BULYAN and a correct gradient
is upper bounded by O( 1√

d
). This is due to the fact that

BULYAN relies on a component-wise median, that, as proven
in [12] guarantees this bound. The proof is then a direct
consequence of Theorem 1 and the properties of BULYAN [12].
(ii) The linear cost in d is the consequence of running through
the coordinates only in a single loop in BULYAN (lines 23-
25 in Algorithm 1) and a computation of euclidean distances
in MULTI-KRUM (line 6 in Algorithm 1). Finally, (iii) is a
consequence of averaging m̃ gradients in MULTI-BULYAN
(returned value in line 24 of Algorithm 1).



V. EXPERIMENTS

We report on the performance MULTI-BULYAN (and it com-
ponent MULTI-KRUM) over two metrics: (1) the aggregation
time of our implementations of MULTI-KRUM and MULTI-
BULYAN, compared to the implementation of MEDIAN in
PyTorch, and (2) the maximum top-1 cross-accuracy reached
on a commonly used classification task in the ML litterature,
compared to mere averaging and MEDIAN.

A. Setup

We run our experiments on the following hardware: (CPU)
Intel® Core™ i7-8700K @ 3.70GHz, (GPU) Nvidia GeForce
GTX 1080 Ti, and (RAM) 64 GB.

We report on the aggregation time, i.e. the time needed by
a GAR to aggregate its input gradients and provide the output
gradient. This metric is arguably the empirical counterpart of
the asymptotic complexity, respectively O

(
n2d
)
, O
(
n2d
)

and
O(nd) for MULTI-KRUM, MULTI-BULYAN and MEDIAN. To
study the empirical behaviors of MULTI-KRUM and MULTI-
BULYAN compared to MEDIAN, we then vary both n and
d over a realistic range of values. Namely we set (n, d) ∈
{7, 9, 11, . . . , 35, 37, 39} ×

{
105, 106, 107

}
and f =

⌊
n−3
4

⌋
.

The protocol for one run is the following. n gradients are
independently sampled in U(0, 1)

d. These gradients are moved
over to the GPU main memory. The command queue is then
flushed on the GPU with torch.cuda.synchronize(),
ensuring no kernel is pending on the CUDA stream. The timer
is then started. The GAR is called on the GPU with the n input
gradients. The command queue is then flushed again, waiting
for the GAR’s execution to fully complete. The timer is finally
stopped. There are 7 runs per values of (n, d), from which we
remove the 2 furthest execution times from the median of the
execution times, and we report on the average and standard
deviation of the 5 remaining measurements in Figure 2.

We report on the maximum top-1 cross-accuracy reached
by a distributed training process using either MULTI-KRUM,
MULTI-BULYAN, MEDIAN or mere averaging for aggregation.
We set n = 11 workers and f = 2. There is no attack
thought: this experiment highlights the benefits of averaging
more gradients per aggregation step, as MULTI-KRUM and
MULTI-BULYAN do, over aggregation rules that keep (the
equivalent of) only one gradient, e.g. MEDIAN.

The classification task we consider is Fashion-MNIST [25]
(60000 training points and 10000 testing points). The model
that we train is a convolutional network, composed of two 2D-
convolutional layers followed by two fully-connected layers.
The first convolutional layer has 20 channels (kernel-size
5, stride 1, no padding) and the second 50 channels (same
kernel-size, stride and padding). Each convolutional layer uses
the ReLU activation function followed by a 2D-maxpool of
size 2 × 2. The first fully-connected layer has 500 hidden
units, employing ReLU, and the second has 10 output units.

Fig. 2: Aggregation time function of the number of aggre-
gated gradients. From top to bottom: d = 105,106,107.
Each experiment is repeated 7 times, and we report on
the average and standard deviation of the 5 aggregation
times closest to the median. The standard deviation in our
measurements is very small, barely visible on the graphs.

We train the model using a cross-entropy loss (log-softmax
normalization + negative log likelihood loss) over 3000 steps,
with a fixed learning rate of 0.1 and momentum 0.9. To
compute their gradients, each worker employs minibatches of
size b ∈ {5, 10, 15, . . . , 45, 50}. Every 100 steps we measure
the top-1 cross-accuracy of the model over the whole testing
set, and we keep the highest accuracy achieved over the whole
training. For reproducibility purpose we seed each training,
repeated 5 times with seeds 1 to 5. We report on the average
and standard deviation of the highest accuracy achieved using
each GAR and batch size in Figure 3.

B. Experimental Results

In Figure 2, the first observation that we can make is that
the computational cost of both MULTI-KRUM and MULTI-
BULYAN indeed appears quadratic in n, the number of work-
ers. The number of workers n is kept below 24 for MULTI-
BULYAN due to a limited amount of available on-die shared
memory on the GPU we used. Regarding MEDIAN, for which
we expect a linear increase with n, the tendency is not clear.



Fig. 3: Maximum top-1 cross-accuracy reached by the
model with a given GAR and gradient batch size. Each
experiment is repeated 5 times, with seeds 1 to 5 for
reproducibility purpose, and we report on the average and
standard deviation of the measured maximum accuracies.

The MEDIAN that we used for comparison is provided by the
state-of-the-art machine learning framework PyTorch.

In Figure 2, and despite a higher asymptotic complexity,
MULTI-KRUM and MULTI-BULYAN achieve lower aggregation
times than MEDIAN for respectively n ≤ 7, n ≤ 9

(
d = 105

)
,

n ≤ 15, n ≤ 13
(
d = 106

)
and n ≤ 17, n ≤ 15

(
d = 107

)
.

Essentially, the higher the dimension of the model, the higher
the number of workers up to which MULTI-BULYAN is more
competitive than the MEDIAN.

For reference, ResNet-50 contains d ≈ 24M parameters.
For such neural network sizes, major DNN frameworks already
show scaling issues when employing only 8 workers [16].
This inherent limitation the practitioner has to apply on the
number of workers not to saturate the standard parameter
server (even when using high-throughput 56 Gbps IP-over-
InfiniBand networks [16]) would actually make MULTI-KRUM
and MULTI-BULYAN faster than MEDIAN in reasonable de-
ployments (where n is tipically smaller than 20). The steady
performance of MULTI-KRUM is mostly explained by the fact
that its most computationally intensive part, the gradients’
pairwise distances computation, is also naturally parallelizable
on GPU: it consists in many additions and multiplications
executed in parallel. The remaining computations for MULTI-
KRUM merely consists in ordering scalar values. The same
applies for MULTI-BULYAN: our implementation does the
costly pairwise distance computation only once, and since
f ≈ n

4 the median of MULTI-BULYAN is computed over a
substantially reduced set of pre-aggregated gradients.

The empirical “slowdown” effect of each GAR is captured
in Figure 3. Each of the studied GAR throw away gradients
that are, in these experiments, all correct. Compared to mere
averaging the n = 11 gradients, aggregating less gradients
per step has a tangible impact on the model performance:
either more training steps, or higher batch sizes per worker,
is needed to compensate. By averaging only (the equivalent
of) one gradient per step, MEDIAN shows in this Byzantine-
free settings a tangible loss in top-1 cross-accuracy compared
to MULTI-BULYAN and MULTI-KRUM, which both achieve

almost the same performance as averaging. As an additional
note, the convolutional model in Figure 3 has d = 431080
parameters, for n = 11 workers (and f = 2). For these
settings, both MULTI-KRUM and MULTI-BULYAN also have
smaller aggregation times than MEDIAN.

VI. CONCLUDING REMARKS

From poisoning to Byzantine faults. We have proven the
Byzantine resilience guarantees of MULTI-BULYAN and its
component MULTI-KRUM, as well as their slowdown with
respect to the fastest (but non Byzantine resilient) gradient
aggregation rule: averaging. We also introduced two notions
of Byzantine resilience (weak and strong), which we believe
are practically interesting in their own right. The first to
guarantee convergence and the second to protect against high-
dimensional vulnerabilities.

Our notion of strong Byzantine resilience is robust to
all kinds of worker failures: software bugs, hardware faults,
corrupt data and malicious attacks. In particular, it also
encompasses poisoning attacks [5], an important topic in
adversarial machine learning. Mediatised cases of poisoning
include social platforms being perturbed by few, acute outlying
data-points. While averaging approaches (and even weakly
Byzantine-resilient approaches) are vulnerable to such attacks,
MULTI-BULYAN tolerates them (unless they originate from a
majority of users) as reported, e.g. in some of the recent work
on backdooring federated learning [26].

We also argue that, even when no obvious network of
machines exist, the distributed point of view presented in this
paper remains relevant. What is machine learning if not an
attempt to aggregate knowledge from distributed sources? As
a concrete instance, an account on a social network posting its
own content and interacting (e.g. like, comment) with content
from other accounts can be seen as a worker. Indeed: each
of these account generates data-points that, in turn, produce
gradients that can be used to update e.g. a recommendation
model. Byzantine-resilient aggregations would then be able to
filter out the gradients malicious accounts would be producing.
Through the distributed computing lense, SGD is an algorithm
that eventually reaches agreement between data sources.

The no-free lunch variance requirement. Since 2017,
many alternatives to averaging have been proposed ( [4], [6],
[8], [8], [12], [18], [19], [22], [23], [28]–[31] to list a few).
One common aspect underlying all these methods, including
ours, is their reliance on some ”quality gradient” from the non
Byzantine workers. This requirement is expressed in terms of
how low should the variance of the gradients be. It is important
to note that this requirement is not new in machine learning
(it is independent of Byzantine resilience requirements), as an
unbounded variance provably prevents convergence [7].

Recently, attention has been brought [3] to the hypothesis
on bounded variance made in the works that are based on
Krum, BULYAN, trimmed mean and variants. This hypothesis



was used also in the present work. It is important to note
that the limitations that are pointed do not contradict what has
been proven in this paper. Precisely, what we prove is that, as
long as the variance of the stochastic gradient is controlled
by the norm of the real gradient (η(n, f)

√
d · σ < ‖g‖),

MULTI-BULYAN keeps making progress (i.e. keeps improving
the accuracy of the model). What has been showed in [3] is
that, when the models have converged (and no accuracy gain
is made anymore), it is possible to inject erroneous gradients
and make them accepted by MULTI-BULYAN. This is not a sur-
prise, as the assumption does not hold when convergence has
happened (the norm of the gradients becomes close to zero). In
practice, this situation is already prevented by what is called
early stopping [14]. Because the behavior of SGD can lead
to bad models after an excessive number of rounds (due to,
among other reasons, the fact that the hypothesis on bounded
variance does not hold anymore close to convergence [7]),
practitioners tend to have a test-set (different than the training-
set) on which the model is tested, when the accuracy on the
test-set starts degrading close to convergence, the training is
stopped and the previous value of the model is kept. The
attack of [3] would therefore only have been effective if it was
preventing SGD from progress in the early steps, not later and
close to convergence.

So far, we have proven that MULTI-BULYAN is (1) faster
than Krum and the Median (the two leading Byzantine resilient
GARs), as it relies on MULTI-KRUM, and (2) more robust
than Krum and the Median, as it can make use of BULYAN.
An interesting open question is whether any progress can be
made on the optimality of the control ratio η(n, f) of MULTI-
KRUM and thus of MULTI-BULYAN? In other words, could
we make η(n, f) smaller, and still prove the convergence
of MULTI-KRUM and MULTI-BULYAN, while tolerating even
smaller values of the variance? If the answer is negative, are
MULTI-KRUM and MULTI-BULYAN plugable in the available
variance-reducing methods [14] for SGD?
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(Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018), vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 3521–3530.
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